

High purity LPE GaAs for far infrared blocked impurity band detectors

B. Cardozo^{1,2}, J.W. Beeman¹, E.E. Haller^{1,2}

¹Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ²Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720

Photoconductive Devices - Current technology and future trends

- High efficiency, low noise photoconductors that can detect light beyond 200µm are currently not available.
- GaAs detectors can extend the long wavelength cutoff beyond stressed Ge:Ga because of the small shallow donor ionization energy (~6meV)

BIB Detector Design and Operation

Energy band diagram of a BIB detector: **a**) unbiased **b**) with an applied bias

- Photon absorption in n+ region.
- Photo-ionized free carriers transport in the conduction band, through the blocking layer into the contact.
- D⁺ move toward the negative contact.
- Electrons in the donor band cannot pass through the blocking layer since no such band exists there.

Requirements for Efficient BIB Operation

- The blocking layer should be as pure as possible(N_d - $N_a \le 10^{11}$ to 10^{12} cm⁻³) to minimize the possibility of electron trapping at an ionized donor or deep level and to maintain a high and uniform electric field across the region.
- The absorbing layer should be highly doped ($N_d \approx 10^{15} \text{cm}^{-3}$) but have very low compensating (minority) impurity concentration in order to maximize the depletion region thickness.

b=blocking layer thickness

Predicted single pass BIB absorption versus minority doping concentration

 $N_d = 1 \times 10^{15} \text{ cm}^{-3}, \alpha = 125^* \text{ cm}^{-1}, b = 5 \mu \text{m}$

N _a (cm ⁻³)	Bias (V)	w (mm)	Percent Absorption
$1x10^{13}$	1.5	10	12
5x10 ¹²	1.5	16	18
1x10 ¹²	1.5	41	40
7x10 ¹¹	1.5	50	46
5x10 ¹¹	1.5	60	53

^{*} Bosomworth, Crandall, Enstrom, 1968

Liquid Phase Epitaxy of GaAs – growth of the blocking layer

• The purity of LPE GaAs films is a result of the segregation of impurities into the liquid phase during growth, as in bulk semiconductor growth, and the availability of very high purity Ga solvent material (99.99999%).

Blocking layer characterization

- Hall effect and resistivity measurements determine the net impurity concentration and carrier mobility.
- $|N_d-N_a| = \frac{2x10^{12}}{cm^{-3}} cm^{-3}$ $\mu_{77} = \frac{180,000}{cm^2/V-s}$
- Capacitance-Voltage measurements determine the net space charge

$$|N_d - N_a| = \frac{5 \times 10^{11}}{10^{11}}$$
 cm⁻³

- **Photoluminescence** can be used to identify individual acceptor species.
 - Major acceptor: C
- Magneto-photoluminescence (courtesy of M. Thewalt, Simon Fraser University) can be used to identify individual donor species.

Major donors: S, Si

Photoluminscence of shallow dopants in an ultrahigh purity GaAs film

Extremely sharp luminescence lines and presence of the free exciton peak confirm the very high purity of the film

Future Work - BIB Production

Once the ability to grow highly doped, low compensation absorbing layers has been developed, it will be combined with a high purity blocking layer to produce a BIB

Acknowledgements

This work was supported by NASA Ames Research Center, Order No. A53228D through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.